Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 2(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36204155

RESUMO

Cells require coordinated control over gene expression when responding to environmental stimuli. Here we apply scATAC-seq and single-cell RNA sequencing (scRNA-seq) in resting and stimulated human blood cells. Collectively, we generate ~91,000 single-cell profiles, allowing us to probe the cis-regulatory landscape of the immunological response across cell types, stimuli, and time. Advancing tools to integrate multi-omics data, we develop functional inference of gene regulation (FigR), a framework to computationally pair scA-TAC-seq with scRNA-seq cells, connect distal cis-regulatory elements to genes, and infer gene-regulatory networks (GRNs) to identify candidate transcription factor (TF) regulators. Utilizing these paired multi-omics data, we define domains of regulatory chromatin (DORCs) of immune stimulation and find that cells alter chromatin accessibility and gene expression at timescales of minutes. Construction of the stimulation GRN elucidates TF activity at disease-associated DORCs. Overall, FigR enables elucidation of regulatory interactions across single-cell data, providing new opportunities to understand the function of cells within tissues.

2.
Nat Biotechnol ; 37(8): 916-924, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31235917

RESUMO

Recent technical advancements have facilitated the mapping of epigenomes at single-cell resolution; however, the throughput and quality of these methods have limited their widespread adoption. Here we describe a high-quality (105 nuclear fragments per cell) droplet-microfluidics-based method for single-cell profiling of chromatin accessibility. We use this approach, named 'droplet single-cell assay for transposase-accessible chromatin using sequencing' (dscATAC-seq), to assay 46,653 cells for the unbiased discovery of cell types and regulatory elements in adult mouse brain. We further increase the throughput of this platform by combining it with combinatorial indexing (dsciATAC-seq), enabling single-cell studies at a massive scale. We demonstrate the utility of this approach by measuring chromatin accessibility across 136,463 resting and stimulated human bone marrow-derived cells to reveal changes in the cis- and trans-regulatory landscape across cell types and under stimulatory conditions at single-cell resolution. Altogether, we describe a total of 510,123 single-cell profiles, demonstrating the scalability and flexibility of this droplet-based platform.


Assuntos
Cromatina/química , Epigenômica/métodos , Microfluídica/métodos , Análise de Célula Única/métodos , Animais , Encéfalo/citologia , Linhagem Celular , Sobrevivência Celular , Cromatina/metabolismo , Técnicas de Química Combinatória , Desoxirribonucleases/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos
3.
Nucleic Acids Res ; 42(18): 11601-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25217590

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor expressed in metazoan cells that is responsible for eliciting the production of type I interferons and pro-inflammatory cytokines upon detection of intracellular, non-self RNA. Structural studies of RIG-I have identified a novel Pincer domain composed of two alpha helices that physically tethers the C-terminal domain to the SF2 helicase core. We find that the Pincer plays an important role in mediating the enzymatic and signaling activities of RIG-I. We identify a series of mutations that additively decouple the Pincer motif from the ATPase core and show that this decoupling results in impaired signaling. Through enzymological and biophysical analysis, we further show that the Pincer domain controls coupled enzymatic activity of the protein through allosteric control of the ATPase core. Further, we show that select regions of the HEL1 domain have evolved to potentiate interactions with the Pincer domain, resulting in an adapted ATPase cleft that is now responsive to adjacent domains that selectively bind viral RNA.


Assuntos
Adenosina Trifosfatases/química , RNA Helicases DEAD-box/química , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Biocatálise , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Interferon beta/farmacologia , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Receptores Imunológicos
4.
J Virol ; 85(9): 4343-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325413

RESUMO

The nonstructural protein 3 (NS3) helicase/protease is an important component of the hepatitis C virus (HCV) replication complex. We hypothesized that a specific ß-strand tethers the C terminus of the helicase domain to the protease domain, thereby maintaining HCV NS3 in a compact conformation that differs from the extended conformations observed for other Flaviviridae NS3 enzymes. To test this hypothesis, we removed the ß-strand and explored the structural and functional attributes of the truncated NS3 protein (NS3ΔC7). Limited proteolysis, hydrodynamic, and kinetic measurements indicate that NS3ΔC7 adopts an extended conformation that contrasts with the compact form of the wild-type (WT) protein. The extended conformation of NS3ΔC7 allows the protein to quickly form functional complexes with RNA unwinding substrates. We also show that the unwinding activity of NS3ΔC7 is independent of the substrate 3'-overhang length, implying that a monomeric form of the protein promotes efficient unwinding. Our findings indicate that an open, extended conformation of NS3 is required for helicase activity and represents the biologically relevant conformation of the protein during viral replication.


Assuntos
Hepacivirus/química , Hepacivirus/enzimologia , RNA Helicases/química , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/genética , Cinética , Ligação Proteica , Conformação Proteica , RNA/metabolismo , RNA Helicases/genética , Deleção de Sequência , Proteínas não Estruturais Virais/genética
5.
Biopolymers ; 91(4): 283-96, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18946871

RESUMO

The nature of specific RNA-RNA and protein-RNA interactions involved in the process of genome dimerization and isomerization in HIV-1, which is mediated in vitro by stemloop 1 (SL1) of the packaging signal and by the nucleocapsid (NC) domain of the viral Gag polyprotein, was investigated by using archetypical nucleic acid ligands as noncovalent probes. Small-molecule ligands make contact with their target substrates through complex combinations of H-bonds, salt bridges, and hydrophobic interactions. Therefore, their binding patterns assessed by electrospray ionization mass spectrometry can provide valuable insights into the factors determining specific recognition between species involved in biopolymer assemblies. In the case of SL1, dimerization and isomerization create unique structural features capable of sustaining stable interactions with classic nucleic acid ligands. The binding modes exhibited by intercalators and minor groove binders were adversely affected by the significant distortion of the duplex formed by palindrome annealing in the kissing-loop (KL) dimer, whereas the modes observed for the corresponding extended duplex (ED) confirmed a more regular helical structure. Consistent with the ability to establish electrostatic interactions with highly negative pockets typical of helix anomalies, polycationic aminoglycosides bound to the stem-bulge motif conserved in all SL1 conformers, to the unpaired nucleotides located at the hinge between kissing hairpins in KL, and to the exposed bases flanking the palindrome duplex in ED. The patterns afforded by intercalators and minor groove binders did not display detectable variations when the corresponding NC-SL1 complexes were submitted to probing. In contrast, aminoglycosides displayed the ability to compete with the protein for overlapping sites, producing opposite effects on the isomerization process. Indeed, displacing NC from the stem-bulges of the KL dimer induced inhibition of stem melting and decreased the efficiency of isomerization. Competition for the hinge region, instead, eliminated the NC stabilization of a grip motif formed by nucleobases of opposite strands, thus facilitating the strand-exchange required for isomerization. These noncovalent probes provided further evidence that the structural context of the actual binding sites has significant influence on the chaperone activities of NC, which should be taken in account when developing potential drug candidates aimed at disrupting genome dimerization and isomerization in HIV-1.


Assuntos
Genoma Viral , HIV-1/genética , HIV-1/metabolismo , Sondas Moleculares/química , Proteínas do Nucleocapsídeo/química , Nucleocapsídeo/química , RNA Viral/química , Dimerização , HIV-1/química , Ligantes , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Estrutura Molecular , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo
6.
J Am Soc Mass Spectrom ; 17(10): 1402-1411, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16872834

RESUMO

The binding modes and structural determinants of the noncovalent complexes formed by aminoglycoside antibiotics with conserved domains of the HIV-1 packaging signal (Psi-RNA) were investigated using electrospray ionization (ESI) Fourier transform mass spectrometry (FTMS). The location of the aminoglycoside binding sites on the different stemloop structures was revealed by characteristic coverage gaps in the ion series obtained by sustained off-resonance irradiation collision induced dissociation (SORI-CID) of the antibiotic-RNA assemblies. The site positions were confirmed using mutants that eliminated salient structural features of the Psi-RNA domains. The effects of the mutations on the binding properties of the different substrates served to validate the position of the aminoglycoside site on the wild-type structures. Additional information was provided by docking experiments performed on the different aminoglycoside-stemloop complexes. The results have shown that, in the absence of features disrupting the regular A-helix of the double-stranded stem, aminoglycosides tend to bind in an area situated between the upper stem and the loop regions, as demonstrated for stemloop SL3. The presence of a tandem wobbles motif in SL4 modifies the regular geometry of the upper stem, which does not affect the general site location, but greatly increases its solution binding affinity compared with SL3. The platform motif in SL2 locates the binding site in the stem midsection and confers upon this stemloop an intermediate affinity toward aminoglycosides. In SL3 and SL4, the extensive overlap of the antibiotic site with the region used to bind the nucleocapsid (NC) protein provides the basis for a competition mechanism that could explain the aminoglycoside inhibition of the NC.SL3 and NC.SL4 assemblies. In contrast, the minimal overlap between the aminoglycoside and the NC sites in SL2 accounts for the absence of inhibition of the NC.SL2 complex.


Assuntos
HIV-1/genética , RNA Viral/genética , Transdução de Sinais/genética , Montagem de Vírus/genética , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Indicadores e Reagentes , Ligantes , Modelos Moleculares , Mapeamento de Nucleotídeos , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...